Experimental Archaeology Gardens Assessing the Productivity of Ancient Māori Cultivars of Sweet Potato, Ipomoea batatas [L.] Lam. in New Zealand

2007 ◽  
Vol 61 (3) ◽  
pp. 235-245 ◽  
Author(s):  
Mike Burtenshaw ◽  
Graham Harris
Plant Disease ◽  
2009 ◽  
Vol 93 (9) ◽  
pp. 933-939 ◽  
Author(s):  
M. Rännäli ◽  
V. Czekaj ◽  
R. A. C. Jones ◽  
J. D. Fletcher ◽  
R. I. Davis ◽  
...  

Strains of Sweet potato feathery mottle virus (SPFMV; Potyvirus; Potyviridae) infecting sweet-potato (Ipomoea batatas) in Oceania, one of the worlds' earliest sweetpotato-growing areas, and in southern Africa were isolated and characterized phylogenetically by analysis of the coat protein (CP) encoding sequences. Sweetpotato plants from Easter Island were co-infected with SPFMV strains C and EA. The EA strain isolates from this isolated location were related phylogenetically to those from Peru and East Africa. Sweetpotato plants from French Polynesia (Tahiti, Tubuai, and Moorea) were co-infected with SPFMV strains C, O, and RC in different combinations, whereas strains C and RC were detected in New Zealand. Sweetpotato plants from Zimbabwe were infected with strains C and EA and those from Cape Town, South Africa, with strains C, O, and RC. Co-infections with SPFMV strains and Sweet potato virus G (Potyvirus) were common and, additionally, Sweet potato chlorotic fleck virus (Carlavirus) was detected in a sample from Tahiti. Taken together, occurrence of different SPFMV strains was established for the first time in Easter Island, French Polynesia, and New Zealand, and new strains were detected in Zimbabwe and the southernmost part of South Africa. These results from the Southern hemisphere reflect the anticipated global distribution of strains C, O, and RC but reveal a wider distribution of strain EA than was known previously.


Author(s):  

Abstract A new distribution map is provided for Sweet potato mild mottle virus, Potyviridae: Ipomovirus. Hosts: sweet potato (Ipomoea batatas). Information is given on the geographical distribution in Africa (Burundi, Kenya, Tanzania, Uganda), Oceania (New Zealand). It is transmitted in a persistent manner by whiteflies, Bemisia tabaci (Hemiptera: Aleyrodidae).


2020 ◽  
Vol 129 (4) ◽  
pp. 351-382
Author(s):  
Atholl Anderson ◽  
Fiona Petchey

Whether kūmara ‘sweet potato’ (Ipomoea batatas) arrived in South Polynesia with initial colonisation or later is discussed in the light of recent evidence from East Polynesia and by examination and statistical modelling of radiocarbon ages associated with kūmara arrival and dispersal in New Zealand. Largely unresolved difficulties in radiocarbon dating of horticultural sites preclude reaching a secure conclusion about the relative timing of kūmara introduction, but strong evidence emerges of delayed dispersal southward and inland of kūmara cultivation. In the short New Zealand chronology this may have been more significant than the date of arrival for the role of kūmara cultivation in economic and political change.


Planta Medica ◽  
2012 ◽  
Vol 78 (11) ◽  
Author(s):  
D Rosas-Ramírez ◽  
R Pereda-Miranda
Keyword(s):  

2018 ◽  
Vol 15 (2) ◽  
pp. 146
Author(s):  
BRILIAN DINANTI ◽  
FITRI HANDAJANI

<p>Liver is an organ with complex metabolism. When the liver is inflamed, cellular immunity will defend against inflammatory agents by stimulating immune cells to produce reactive oxygen species (ROS). Excessive ROS accumulation cause oxydative stress with increased  liver malondialdehyde (MDA) level. Some researches showed that purple sweet potato contain flavonoids (anthocyanins) that functioned as antioxydants. This study aimed to show the prophylactic effect of purple sweet potato extract to the liver MDA level of male Wistar rats induced by carrageenan.</p><p>This study used post-only control group method using 18 male Wistar rats divided into 3 groups: group of rats without treatment, group of rats induced by 0,1 ml of 1% carrageenan by intraplantar injection on day-8, and group of rats given with 872 mg/kgBW of purple sweet potato extract for 7 days and induced by 0,1 ml of 1% carrageenan. In the end of the study, the liver MDA levels were measured by Thio-Barbituric Acid method on each groups.</p><p>The results of One-Way ANOVA test showed there was no significant difference (p = 0,290) between group of rats without treatment (<em>x̅</em>= 207,50) and group of rats induced by carrageenan (<em>x̅</em>=233,17). Then, there is no significant difference (p = 0.978) between group of rats induced by carrageenan and group of rats given with prophylactic purple sweet potato extract and induced by carrageenan (<em>x̅</em>= 232,50).</p><p>The conclusion of this study is giving intraplantar injection of carrageenan can increase liver MDA level insignificantly and giving prophylactic purple sweet potato extract has an effect to decrease the liver MDA level of rats induced by carragenan insignificantly because it contains anthocyanins as antioxidants.</p><p> </p><strong>Keywords: </strong>Liver, <em>Ipomoea batatas</em> L., Malondialdehyde, Anthocyanins


Agrotek ◽  
2018 ◽  
Vol 3 (2) ◽  
Author(s):  
Andrew B. Pattikawa ◽  
Antonius Suparno ◽  
Saraswati Prabawardani

<em>Sweet potato is an important staple food crop especially for the local people of Central Highlands Jayawijaya. There are many accessions that have always been maintained its existence to enrich their various uses. Traditionally, sweet potato accessions were grouped based on the utilization, such as for animal feed, cultural ceremonies, consumption for adults, as well as for infants and children. This study was aimed to analyze the nutritional value of sweet potatoes consumed by infants and children of the Dani tribe. Chemical analyses were conducted at the Laboratory of Post-Harvest Research and Development Center, Cimanggu, Bogor. The results showed that each of 4 (four) sweet potato accessions which were consumed by infants and children had good nutrient levels. Accession Sabe showed the highest water content (72.56%), vitamin C (72.71 mg/100 g), Fe (11.85 mg/100 g), and K levels (130.41 mg / 100 grams). The highest levels of protein (1.44%), fat (1.00%), energy (154.43 kkal/100 gram), carbohydrate (35.47%), starch (30.26%), reducing sugar (3.44%), riboflavin (0.18 mg/100 g), and vitamin A (574.40 grams IU/100 were produced by accession Manis. On the other hand, accession Saborok produced the highest value for ash content (1.32%), vitamin E (28.30 mg/100 g), and ?-carotene (64.69 ppm). The highest level of crude fiber (1.81 %) and thiamin (0.36 mg/100 g) was produced by accession Yuaiken.</em>


Sign in / Sign up

Export Citation Format

Share Document